
R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 1

A Comparison of CDSA to
Cryptoki

Ruth Taylor
rct@epoch.ncsc.mil

National Security Agency

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 2

Agenda
What is a CAPI?

Motivation for Study

CDSA and Cryptoki Overviews

Mapping the Calls: Trends

Differences in Auxiliary Functionality

Alternate Implementations

Porting Issues

Adaptation Layers

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 3

What is a CAPI?
CAPI: Cryptographic Application Programmer Interface

• Set of calls allowing an application to access cryptography
• High level: programmer requests “encrypt”
• Low level: programmer requests “encrypt” with

 3DES, CBC mode, IV=x, and y padding bytes

• Both CDSA and Cryptoki are low level CAPIs

Why use a CAPI?
• Cryptographic library correctness and reusability

• Modularity => isolates application or cryptography
modifications

• Isolation of cryptography => better system security

- Cryptography in a separate library: good
- Cryptography in a separate process: even better
- Secure OS is needed for true security

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 4

Motivation for Study

Which CAPI to use in Flask?

• Flask: secure OS prototype jointly developed by the
University of Utah and R23’s Trusted Operating
Systems Team

Useful to CAPI Community

• Contrast two common CAPIs

• Help with ports & layering between CDSA and
Cryptoki

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 5

CDSA Overview
CDSA: Common Data Security Architecture

• Originally developed by Intel Architecture Labs (1997)
• Standardized by Open Group (December 1997)
• Support from IBM, Netscape, Entrust, TIS, Sun, HP,

Motorola, Shell, J.P. Morgan...

Features
• Layered architecture:

- API to crypto, trust policy, data storage, certificate services
- Security administrator add security modules of their choice

• Different interfaces for applications and security service
libraries

• Rich in auxiliary functionality
- verifies authenticity & integrity of add-in modules, registers
 module capabilities, caches user security contexts
- memory management for applications

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 6

CDSA Overview*

TP=Trust Policy, CSP=Cryptographic Service Provider, DL=Data
Library, CL=Certificate Library, EL=Elective Library

 *Figure extracted from Open Group CDSA Specifications c707, ISBN 1-85912-194-2.

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 7

Cryptoki Overview
Cryptoki = RSA’s PKCS #11

• A CAPI to cryptography services ONLY

• single interface for both applications & crypto libraries

• simpler than CDSA => less auxiliary services provided
- no memory management for applications

• originally designed for direct hardware interfacing
- can also handle software tokens

Terminology
• mechanism: a cryptographic algorithm

• token: module which implements the mechanism

• slot: abstract adaptor which holds a token

• session: logical connection between an application and token

• objects: specific data types (e.g. DES3 secret key)

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 8

Quick Comparison: CDSA vs.
Cryptoki

Similarity:
• Both define low-level interfaces to cryptography

Difference: Auxiliary Services
• CDSA is anarchitecture with cryptographic, data storage,

certificate, and trust policy libraries

• Cryptoki only defines the cryptographic interface

• Therefore, CDSA is richer in auxiliary services to manage the
architecture (module management, memory management)

 Difference: Hardware Interface
• CDSA: uses either hardware or software cryptography

• Cryptoki: originally designed to interface to hardware, and
has more direct interfaces to hardware cryptographic tokens

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 9

CDSA Contexts v. Cryptoki
Objects

CDSA Contexts:
• Package containing all information needed to perform the

call: algorithm, key data, initialization vector, mode,
padding, valid dates...

Cryptoki objects:
• Define the exact format for a specific data type (secret key,

certificate) and algorithm

• E.g., DES3 secret key object or RSA public key object

 Cryptoki mechanisms + objects ~~ CDSA contexts
• Objects/contexts are created, manipulated, or destroyed

beneath the API, which returns a handle. Application can’t
directly manipulate them.

• Object and context handles are passed as parameters to CSPs

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 10

Mapping the Calls: Trends
(CSSM API & SPI Mapped to Cryptoki calls)

• Cryptographic calls: mapped 1-to-1, 88% equivalence; those
not equivalent had alternate implementation methods

• Calls to auxiliary functionality: many differences

• CDSA was higher-level than Cryptoki
- CSSM_GetModuleInfo -> C_GetSessionInfo, C_GetSlotList ,

C_GetSlotInfo, C_GetTokenInfo ,
C_GetMechanismInfo, C_GetInfo

- Cryptographic calls:
C_*Init(mechanism_ptr,sesssion_handle,objects,data);

 C_*;

 CSSM_Encrypt(context, data) ;

• See paper for category mappings & technote for call
mappings

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 11

Unique Auxiliary Functionality:
Cryptoki

Token Administration
• Cryptoki has a simple token administration model

- Security officer must initialize token
- Users must login w/ PIN before accessing private objects

• C_InitToken : Initializes token by destroying objects and
denying normal user access until PIN is set

• C_InitPIN : Initializes a normal user’s PIN

Low-level Hardware Interface
• C_WaitForSlotEvent : Wait for slot event (eg. token insertion)
• C_InitToken, C_InitPIN, C_SetPIN, C_Login : Allow user

to interface w/ a protected authentication path on token (e.g.
PINPad)

• C_CloseAllSessions : Optionally ejects token

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 12

Unique Auxiliary Functionality:
CDSA

Module Administration

• CSSM_Module(Un)Install : Add/delete module from
CSSM Registry

• CSSM_VerifyComponents : Authenticate CSSM components
and verify their integrity

• CSSM_Get{Handle,GUID}Usage : Return bitmask describing
module’s services given a handle or GUID

• CSSM_SetModuleInfo : Set module description information

• CSSM_ListModules : List all currently registered modules

• CSSM_FreeInfo, CSSM_Freelist, CSSM_Free, CSSM_FreeKey,

CSSM_FreeModuleInfo, CSSM_GetAPIMemoryFunctions : The
CDSA memory management functions

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 13

Unique Auxiliary Functionality:
CDSA

Different Architectures

• CSSM_GetInfo : Returns version information for
CSSM instances

• CSSM_RetrieveCounter : Returns value for a
tamperproof clock

• CSSM_VerifyDevice : Force a cryptomodule to do self-
verification and integrity testing

• CSSM_RequestCSSMExemption : Application requests
exemption from a CSSM standard built-in security check

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 14

Alternate Implementations:
Cryptoki

• C_SignRecover : Signs data such that the data can be recovered.
-> call CSSM_EncryptData with a private key

• C_VerifyRecover : Verifies signature and recovers data.
 -> callCSSM_DecryptData with a private key

• C_CloseAllSessions : Close all sessions between application
and token, destroying all session objects.

->callCSSM_ModuleDetach repeatedly;whenlastsessionisclosed,
objects should be removed.

• C_InitPIN : Initializes a normal user’s PIN through the Cryptoki
software or using a protected authentication path (PINPad).

-> CDSA allows all security administration tasks to be defined as
CSSM_PassThrough functions.

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 15

Alternate Implementations: CDSA

• CSSM_VerifyComponents : Verifies CSSM components
-> Cryptoki tokens can be authenticated w/ built-in certificates or

tokens may be challenged to sign a message w/ secret key.

• CSSM_QuerySize : Returns size of output buffer needed.
 -> In Cryptoki, call the cryptographic fxn w/ a NULL buffer.

• CSSM_{Generate,Verify}MAC : Message Authentication Code
-> In Cryptoki, use the signature operations w/ symmetric keys

• CSSM_PassThrough : Allows an application to access
functionality implemented by the CSP but not part of the CSSM
API.

 -> Extend Cryptoki’s interface by simply adding calls.

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 16

Porting Issues (Summary)
Need to consider..

• Converting function names, parameter lists, call sequences

• Memory Management
- CSSM API optionally does this for applications
- Cryptoki requires application to do

• CSP Verification
- CSSM does CSP verification and built-in security checks
- In Cryptoki, these are implemented independent of the API

• Interfaces to Hardware CSPs
-Cryptokiprovides interfacestowait for tokenremovalor login

through protected authentication paths
- In CDSA, these must be implemented as a PassThrough fxn

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 17

Adaptation Layer

• 1998: Intel demo’d a CDSA over Cryptoki Adaptation Layer

• Advantages of this approach:

- Cryptoki is lower level, and better built upon

- A Cryptoki library, with an adaptation layer mapping it to
 the CSSM SPI, fits into the CDSA model as a CSP

 CSSM
 Cryptoki adaptation
 layer

 Cryptoki library

 Cryptoki driver

 Token

 Cryptoki

 CSSM API

 CSSM SPI

 API

 application

R 2 : I n f o r m a t i o n S e c u r i t y R e s e a r c h

10/18/99 18

 Questions?

Ruth Taylor
rct@epoch.ncsc.mil

